
Chapter 8 

Probe-based measurement systems 

 

8.1 An overview of probe-based measurement systems 
 
A critical component of the near-field scanning microwave microscope (NSMM) is the broadband probe. 
Thus, a fundamental understanding of the probe’s near-field interaction with investigated materials and 
devices is necessary for interpretation of NSMM measurements. In this chapter, we will discuss the 
fundamental concepts and modeling of probe-based measurement systems. We will place particular 
emphasis on near-field probes that are similar to atomic force microscope cantilevers, including models 
for local effects around the tip-apex, as well as the parasitic effects of the cantilever’s body. This 
introduction should serve as a foundation for understanding the application of these measurement 
systems to semi-quantitative and quantitative characterization of both devices and materials. In addition, 
we shall introduce techniques for calibration of broadband scanning probe systems that enable 
quantitative characterization of device and material properties.  
 
In recent years a number of variants of NSMMs have been reported. They can be distinguished based on 
the principles of their design. The designs include instruments based on transmission lines, [1]-[4], 
waveguides [5],[6], resonant cavities [4],[7] and other scanning probe microscope architectures [8]-[10]. 
A more complete summary of these techniques can be found in review articles [11],[12] and in the 
preceding chapter. In general, microwave microscopes utilize either resonant or non-resonant probes. In 
the case of resonant probes, changes in resonant frequency and quality factor are measured either as a 
sample is brought towards the probe tip or as an inhomogeneous sample is scanned laterally beneath the 
tip. The changes in resonant frequency and quality factor are related to the local electromagnetic 
properties of the sample by use of models and calibration techniques. In the case of non-resonant probes, 
the probe consists either of an electrically small aperture or a protruding, electrically small antenna 
integrated into a one- or two-port microwave network. The probe-sample coupling is characterized 
through position-dependent measurements of the complex reflection coefficient or complex transmission 
coefficient. For both resonant and non-resonant probes, in order to extract material properties of the 
sample, it is necessary to calculate the detailed field configuration in the probe-sample region as a 
function of the probe geometry, probe-to-sample distance and properties of the probed specimen. 
 
Below, we address the existing state-of-the-art models of the tip-sample interaction. This interaction has 
direct consequences for application and calibration of probe-based systems. We take an experimental 
approach based on measurement of calibration artifacts combined, where possible, with vector network 
analyzer (VNA) calibration procedures. In order to extract characteristic parameters from such 
measurements, the tip-sample interaction must be modeled and a corresponding inverse problem must 
be solved. As no unifying theoretical approach exists at present, we will review several different methods. 
Due to the near-field nature of this interaction, several different modeling approaches may be used, 
independently or in combination: lumped element circuits, transmission line circuits, or finite element 
modeling. To date, such approaches have been successful when applied to microscopes operating in 
reflection mode. The situation is more complicated and much less understood for transmission mode 
operation, lacking established procedures for calibration and device parameter extraction.  
 



We will start with a description of the simplest models. We begin with tip-sample capacitance models, 
including the coupling capacitance between the tip and the sample in cases where there is a gap between 
the tip and the sample surface. We discuss models of the most common tip shapes and their influence on 
the interpretation of measurements. In the next step, we approach the microwave probing problem from 
the electromagnetics point of view, implementing solutions based on Maxwell’s equations. From there, 
we describe of existing calibration procedures for NSMMs that are being adopted for quantitative 
characterization of devices. In Chapter 9, we will expand on this discussion to describe particular 
applications to electromagnetic characterization of materials. 
  
8.2. Simple tip-sample models. 
 
8.2.1. General considerations 
 
Tip-sample models are indispensable for quantitative characterization of material properties. As with the 
modeling of microwave devices, these models can come in many forms, including analytical models, circuit 
models, and finite-element-based calculations. These techniques are powerful, but can’t be generalized. 
Therefore, one has to treat each measurement individually. Models of tip-sample interactions may be 
developed by use of the same commercial software programs that are used for modeling of microwave 
devices, albeit with many of the same restrictions and complications that were described in discussion of 
broadband modeling of nanoelectronic devices. In the case of near-field microscopy, the situation is 
slightly simplified. Due to the near-field nature of the interaction, modeling can be done without invoking 
full microwave solvers. Rather, the modeling can be done at a single frequency with electro- and magneto-
static packages. Even in this simplified case, each particular measurement has to be considered 
individually with little possibility of generalization. Therefore, we will focus on simpler lumped element 
models and quasi-analytical approaches that have proven to be useful for the development of calibration 
approaches and, in turn, quantitative (or semi-quantitative) characterization. 
 
In order to get quantitative information about the device properties and introduce reasonable calibration 
procedures, it is necessary to capture all of the important contributions that influence the measurement 
in the tip-sample model. Thus, in NSMM experiments, the tip-sample interaction model embodies critical 
aspects of the experimental configuration. For near-field probes that are similar to atomic force 
microscope cantilevers, the underlying electromagnetic interaction with the sample is more or less the 
same for all NSMM experimental configurations, independent of whether the modeling of these 
interactions is based on a resonant cavity, a transmission line, or other implementation. However, the 
nature of probe-sample coupling and parasitic coupling within the system may vary strongly from 
implementation to implementation. For example, if the probe tip is not in mechanical contact with the 
sample (e.g. if the tip is a height h above the sample), then the electrostatic interaction of the tip with the 
sample, which we will refer to as the “coupling capacitance” or “coupling impedance,” must be included 
in addition to the sample impedance that arises from interactions within the material. In a lumped 
element picture, this likely will take the form of one or more capacitors. These capacitances contribute to 
the measured response and incorporate the influence of probe and sample geometry, as discussed further 
below. In addition, there are configuration-dependent, parasitic interactions of the tip with the sample 
that must be included in the model.  
 
To summarize, there are three major elements in a tip-sample model of a (non-contact) NSMM:  the 
parasitic impedance, the coupling capacitance, and the impedance characterizing the sample itself. We 
will address all these impedances as we proceed through this chapter. We start with the coupling 
capacitance. The coupling capacitance is critical to calibration of NSMMs, but the coupling capacitance is 



only one part of the interaction. Full calibration requires taking into account all the components of the 
measurement path, including those components outside of the tip-sample model such as any resonator 
structure. Finally, because the parasitic capacitance is common to all of the models, we will discuss it 
separately when addressing specific calibration techniques.    
 
 
8.2.2. Coupling capacitance: parallel-plate model 
 
The natural first approximation is to model the coupling capacitance as a parallel plate capacitor with the 
two electrodes formed by the tip and the sample surface, respectively [13]. This approach, although 
somewhat crude, has been used extensively with surprisingly good results. This applies especially for cases 
where the objective is understanding the basic physics of a system, obtaining preliminary approximations 
of material parameters, or semi-quantitative estimates of relative contrast within an image. More precise 
models are needed to obtain the absolute values of the measured parameters. 
  
The coupling capacitance between the tip apex and sample, approximating the system as a parallel plate 
capacitor is 
 

𝐶𝑎𝑝𝑒𝑥−𝑝𝑝 =
𝜋𝜀0𝑅

2

ℎ
  ,       (8.1) 

 
where R is the effective tip radius and h is the tip-sample surface distance. This approach can be improved 
by including a correction for the fringing capacitance. If the tip apex can be considered to be a disc-shaped 
terminus of a cylinder, the fringing stray capacitance of the disc can be expressed as [14] 
 

𝐶𝑎𝑝𝑒𝑥−𝑠𝑡𝑟𝑑𝑠𝑐 = 2𝜋𝜀𝑅 ∙ 𝑙𝑛 (
2𝜋𝑒𝑅

ℎ
)  .     (8.2) 

 
The authors of Reference [14] found empirically that the correction term 
 

𝐶𝑎𝑝𝑒𝑥−𝑠𝑡𝑟𝑑𝑠𝑐 = 2𝜀𝑅 ∙ 𝑙𝑛 (
8𝜋𝑅
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𝜋
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))
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     (8.3) 

 
provides accuracy within about 2% when R/h is on the order of unity with increased accuracy at larger 
R/h ratios. The resulting capacitance is the sum  
 

𝐶𝑎𝑝𝑒𝑥 = 𝐶𝑎𝑝𝑒𝑥−𝑝𝑝 + 𝐶𝑎𝑝𝑒𝑥−𝑠𝑡𝑟𝑑𝑠𝑐 .     (8.4) 

 
Clearly, the parallel-plate approach can work well only for conducting samples. Its application for dielectric 
materials is limited and can be used only as a first approximation. 
  
8.2.3. Coupling capacitance: spherical and conical tip shapes 
 
The comparison of NSMM models with experimental results clearly shows that better agreement between 
model and experiment can be obtained by approximating the tip apex as a sphere. In this case, one can 
use the method of images to model the tip-surface interaction and the corresponding coupling 
capacitance. The method of images is well known from electrostatics and it can be applied to broad range 
of materials [15]. In References [10], [16]-[18] the method of images was used to derive the apex coupling 
capacitance for isotropic materials and in Reference [19] the method was extended to anisotropic 



dielectrics. Indeed, for many applications it is possible to get good agreement between experiments and 
simple analytical expressions derived by use of the method of images. For example, in the cases of a tip 
over a metallic or dielectric surface, the apex coupling capacitance can be expressed as 
 

𝐶𝑎𝑝𝑒𝑥−𝑚/𝑑 = 4𝜋𝜀0𝑅 sinh(𝛼)∑ 𝐴𝑛−1(sinh(𝑛𝛼))−1∞
𝑛=1   ,   (8.5) 

 

where 𝐴 = 1 for a metal and 𝐴 = (
𝜀𝑟−1

𝜀𝑟+1
) for a dielectric. The parameter 𝛼 = 𝑐𝑜𝑠ℎ−1(1 + 𝑎′) where 𝑎′ =

ℎ 𝑅⁄ . This approach substantially improves agreement with experimental results compared to the parallel-
plate model. For the interested reader, more sophisticated approaches based on full solution of the 
electrostatic problem and finite-element methods can be found in References [20]-[24]. 
 
Further refinements to the method-of-images include corrections that more accurately capture the shape 
of the tip. This is a complex problem that can be treated correctly and completely only by use of numerical 
methods. In many applications, the apex is modeled as a sphere and the rest of the tip is modeled as a 
cone described by its taper angle θ and its length L. The coupling capacitance of a combination of the 
spherical apex with the conical tip is given by a logarithmic expression. For a tip over a metallic surface 
the apex coupling capacitance can be expressed as [25] 
 

𝐶𝑎𝑝𝑒𝑥 = 2𝜋𝜀0𝑅𝐾
′𝑙𝑛 (1 +

𝑅(1−𝑠𝑖𝑛𝜃)

ℎ
) ,     (8.6)  

 
where the constant K’ has to be determined empirically from experimental measurement of a known 
sample.  
 
In many common experimental situations, the sample configuration is a thin dielectric film deposited on 
a highly conductive or metallic substrate. The apex coupling capacitance for conical tip over a dielectric 
film backed by a metal is obtained by modification of Equation (8.6). Specifically, this is done by replacing 

ℎ with ℎ +
𝑑

𝜀𝑟
, leading to [26] 

 

𝐶𝑎𝑝𝑒𝑥(ℎ, 𝑑) = 2𝜋𝜀0𝑅𝑙𝑛 (1 +
𝑅(1−𝑠𝑖𝑛𝜃)

ℎ+
𝑑

𝜀𝑟

)  ,    (8.7) 

 
where εr is the relative permittivity of the dielectric and d is the thickness of the film. Sometimes it is 
useful to use this expression to obtain the derivative of the coupling capacitance with respect to the tip 
distance from the surface: 
 

𝐶𝑎𝑝𝑒𝑥
′(ℎ, 𝑑) = 2𝜋𝜀0 ∙

𝑅2(1−𝑠𝑖𝑛𝜃)

(ℎ+
𝑑

𝜀𝑟
)(ℎ+

𝑑

𝜀𝑟
+𝑅𝑠𝑖𝑛𝜃)

 .    (8.8) 

 
 
In References [27]-[30], a more detailed expression for a thin film over metallic surface is derived, once 
again assuming a conical tip geometry:      
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The corresponding derivative with respect to the tip distance from the surface is 
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Note that these capacitances may have an additional constant term that is independent of h and therefore 
is not explicitly given above. 
 
Another interesting, empirical approach was introduced in Reference [31], in which the authors used high-
frequency, finite element calculations that were subsequently fitted with analytical formulas. The 

characteristic impedance of the tip-sample system expressed in terms of propagation constant  and 
reference impedance Z0 was found to be [31] 
 

𝑍𝑖𝑛 =
1−Γ2+2𝑗Γsin(γ)

1+Γ2−2𝑗Γcos(γ)
𝑍0  .      (8.11) 

 
From Equation (8.11), it follows that the coupling capacitance is  
 

𝐶𝑐𝑝𝑙 =
2Γcos(γ)−(1+Γ2)

2𝜔𝑍0Γsin(γ)
=

2ℜ(𝑆11)−(1+|𝑆11|
2)

2𝜔𝑍0ℑ(𝑆11)
  ,    (8.12)  

 
where Γ is the reflection coefficient and ω is the NSMM operating frequency. The operators ℜ and ℑ 
denote the real and imaginary parts of a complex number, respectively. 
 
8.2.4. Coupling capacitance: elementary antenna approach 
 
As stated above, the use of electrostatics to describe NSMM tip-sample interactions is successful because 
of the near-field nature of the problem. Although the electrostatic approach is effective, it is useful to also 
discuss the simplest dynamic, electromagnetic solutions to the problem of tip-sample interactions. It is 
indeed possible to apply full electromagnetic finite-element solvers to the problem. The calculated results 
provide field profiles and the corresponding dependence of the impedance on the distance from the 
surface. However, due to computational constraints, the use of numerical methods is limited to the region 
closest to the tip. Though such simulations accommodate arbitrary tip shapes, other parts of the probe 
structure, such as a cantilever beam, have to be neglected. Here, we will focus on analytical and semi-
analytical solutions that could be applied by the interested reader to directly obtain quantitative NSMM 
results without the need for numerical solutions. Ideally, the numerical methods serve as an important 
and efficient way to check the validity of the analytical approach. We will not describe the numerical 
solutions of the problem at hand, but in many instances the analytical asymptotic solutions have been 
validated by numerical methods. 
 
In the electromagnetic wave solution of the coupling capacitance, we will assume that the tip can be 
modeled as an elementary dipole or as a small wire antenna with length much smaller than the 
electromagnetic wavelength. In addition, the problem is assumed to be confined to the near field such 



that the distance of the elementary dipole from the surface is also much smaller than the electromagnetic 
wavelength. The general solutions are usually derived in the form of differential-integral equations with 
simplification to asymptotic cases representing the far- and near-field. Here we will focus on results for 
the elementary vertical electric dipole (VED). The reader will find other configurations discussed in the 
referenced literature.  
 
The problem of an elementary electric dipole radiating above a high-loss half space was originally 
formulated by Sommerfeld [32],[33]. The problem is treated through the solution of Maxwell’s equations 
in a cylindrical coordinate system by use of the Hertz vector potentials with the appropriate boundary 
conditions (See Chapter 2). The solution leads to so-called Sommerfeld integrals that are directly solvable 
only for very special cases, such as those described in References [34]-[37]. Notably, Lindell and Alanen 
introduced an elegant approach [38],[39], known as exact image theory that introduced a way to 
implement the imaging theory within the Sommerfeld integral framework.  
 
In the VED model, the important parameter is the impedance of the antenna above a conducting or lossy 
surface. The real part of this impedance represents the loss due to tip-sample interactions. For conducting 
samples, the inclusion of the losses due to such a resistive load is important to consider for quantitative 
assessment. The imaginary part of the impedance relates directly to the coupling capacitance. The 
treatments of Wait [40],[41] and Lindell and Alanen [42] determined the impedance change of a VED and 
other elementary antennas in the presence of a conducting half-plane and derived simple asymptotic 
forms for practical use, albeit with some limitations. Reference [43] compared the numerical integration 
of constitutive equations with limiting cases. In particular, the far-field and near field-limits for all the 
configurations of elementary electric and magnetic dipoles have been determined in simple functional 
forms. Because the near-field limit can be used for characterization of the tip-sample coupling, we will 
explicitly give the result for a VED in the limit of close proximity of the dipole to a lossy surface.  
 
In the limit 𝛼𝑁 ≪ 1, where the interaction distance of the dipole over the sample is much smaller than 
the wavelength of the incident electromagnetic field 𝜆, the change of the impedance of a VED over a 
conducting surface with permittivity 𝜀1 = 𝜀𝑟1𝜀0and conductivity 𝜎1can be expressed as [43] 
 
 

𝑍−𝑍0

𝑅0
≅

3(𝑁+1)

4
[𝑓1(𝐷) + (
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2
)
2
𝑓2(𝐷)] + 𝑗 {
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𝛼3
} 𝑒−𝐴 ,  (8.13) 

 
 
where Zo is the impedance of the same dipole located in free space and Ro is the free space resistance of 

the antenna, while the parameters 𝑁2 = (𝜀1 𝜀0⁄ ) − 𝑗(𝜎1 𝜔𝜀0⁄ ), 𝛼 = 2ℎ(2𝜋 𝜆⁄ ), 𝐴 = 𝛼√𝑁2 − 1 and 𝐷 =
𝑁2−1

𝑁2+1
. The functions are defined as 
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𝑓2(𝑥) = −
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where 𝛽 =
𝑁−1

𝑁+1
 . 

 



For the case of VED over a perfectly conducting plane the change of the impedance can be expressed as 
[41] 
 

𝑍−𝑍0

𝑅0
≅

1

𝑁
𝑓3(

2𝜋

𝜆
∙ 𝛼) ,       (8.16) 

 
where 
 

 𝑓3(𝑥) = 3[𝑥−2(1 + 𝑗𝑥)𝑒−𝑗𝑥 − 𝐸𝑖(−𝑗𝑥)]      (8.17) 
 
and the exponential integral is defined as  
 

𝐸𝑖(−𝑗𝑥) = −∫
𝑒−𝑗𝑦

𝑦
𝑑𝑦

∞

𝑥
 .      (8.18) 

 
 
 
 
8.3. Calibration procedures for microwave scanning probe microscopes 
 
8.3.1 Calibration of near-field scanning microwave microscopes operating in reflection mode 
 
Quantitative and reproducible measurements of intrinsic material properties can be done only through 
calibration of the measurement systems, including broadband scanning probe microscopes. As many 
existing commercial and home-made NSMMs operate in contact mode, most of the existing calibration 
approaches were derived and implemented assuming that the tip of the cantilever is in direct contact with 
the sample surface. The procedures described below can be extended to non-contact mode operation. 
   
One approach to quantitative impedance measurements is to introduce a calibration procedure that is 
based on calibration artifacts. One of the first of such procedures for local, quantitative impedance 
measurements with a resonant, network-analyzer-based NSMM was introduced in Reference [44]. In that 
work, the calibration artifacts comprised a series of different-sized, square, metallic patches deposited on 
a silicon dioxide film that was in turn supported by low resistivity silicon. During the calibration procedure 
the probe is in contact with the calibration artifact. A sequence of measurements is made in which the 
probe is first positioned on one or more patches and then on the bare, silicon dioxide film. The differential 
capacitance is then defined the difference between the capacitance of the metallic patch and the 
capacitance of the silicon dioxide thin film. The relative capacitance was empirically found to be 
proportional to the change in the NSMM reflection coefficient. Independently, the perturbation of the 
reflection coefficient of the NSMM is calculated in the presence of known capacitive loads represented 
by the metallic patches and the silicon dioxide film [45]. Thus, by measurement of a series of patch 
capacitors, it is possible to quantify the relationship between the measured responses of the NSMM 
system to each capacitive load. In turn, this gives the required calibration coefficient that relates the 
measured change in the reflection coefficient to the known capacitance of the artifact. Further, by use of 
a combination of FEM simulations and measurements over different thicknesses of the oxide layer, the 
effective tip radius is obtained. Knowledge of the effective tip radius is critical for the transfer of the 
calibration to an arbitrary sample. An additional result from this work is that the capacitance between the 
body of the cantilever (or other probe-supporting structure) and the sample surface can be treated as a 
constant. This observation has been used in all subsequent calibration approaches that are discussed 
below.  



  
Building upon the work in Reference [44], another calibration artifact was designed that incorporated a 
set of circular Au/Ti microcapacitors deposited on a SiO2 staircase [46]. In addition, a bare SiO2 staircase 
without metallic patches was incorporated into the same sample. A sketch of the measurement system, 
including the calibration artifact is shown in Fig. 8.1 along with a simple capacitance model. The 
measurement system shown in Fig. 8.1(a) operates as follows: the microwave signal is delivered to the tip 
from a VNA. The VNA frequency is swept in a narrow range around a local minimum in the reflection 
coefficient corresponding to the most optimal impedance match to the resonator. Here, the resonator 

comprises the cantilever, probe tip, half wavelength coaxial resonator and a 50  shunt resistor. In the 
next step, an operating frequency is selected as indicated in Fig. 8.1(c). Position-dependent measurements 
of the reflection coefficient are carried out at this selected frequency. The topography is measured 
simultaneously with the amplitude and phase of the complex reflection coefficient S11, defined in the usual 
way: 
 

 𝑆11 = (𝑍𝐿 − 𝑍0) (𝑍𝐿 +⁄ 𝑍0)  ,      (8.19) 
 

where ZL is the load impedance and Z0 = 50  (the reference impedance). Typical NSMM images are shown 
in Figs. 8.2 (metal capacitors) and Fig. 8.3 (bare oxide staircase). 
 
Figure 8.1. An AFM-based near-field scanning microwave microscope. (a) Schematic of the a near-field 

scanning microwave microscope and related test equipment, including the vector network analyzer 

(VNA), half-wavelength resonator, cantilever, calibration sample, and beam-bounce detection. (b) A 

simple circuit model of the probe interaction with the calibration sample. (c) An example of a local 

minimum in the reflection coefficient, with the operating frequency (downward pointing triangle) offset 

slightly from the local minimum. Adapted from H. P. Huber, et. al., Rev. Sci. Instrum. 81 (2010) art. no. 

113701, with permission from AIP Publishing. 

 
The capacitors on the reference sample are modeled as ideal, parallel-plate capacitors with a uniform SiO2 
dielectric sandwiched between the circular metal disc and a corresponding circular region on the 
supporting Si substrate. Equations (8.2) or (8.3) may be used to correct for the fringing capacitance, but 
for this system the effect of the fringing capacitance can be neglected. The total capacitance is modeled 
as the parallel plate capacitance Cdiel in series with an additional capacitance between the Si/SiO2 interface 
and the sample holder, Cback. Thus, the total capacitance Ctot is 
 

1

𝐶𝑡𝑜𝑡
=

1

𝐶𝑑𝑖𝑒𝑙
+

1

𝐶𝑏𝑎𝑐𝑘
         (8.20) 

 
with 
 

𝐶𝑐𝑎𝑝 =
𝜀𝐴

𝑑
  ,        (8.21) 

 
where A is the pad area, d is the thickness of the dielectric, and ε is the permittivity of the SiO2. The 
parameters A and d may be obtained directly from the topography images, provided that the positioning 
elements in the scanning probe microscope have been calibrated. 
 



Figure 8.2. Measurement of microcapacitors with a near-field scanning microwave microscope. (a) 
Topography and (b) amplitude of the reflection coefficient imaged for a series of oxide-supported, gold 
microcapacitors. (c) Total capacitance of a series of capacitors, obtained by the calibration procedure 
outlined in the text. Line cuts taken along the dashed line in (b) provide the raw input for the calibration 
procedure. Theoretical calculations based on Equations (8.20) and (8.21) are shown as a solid line while 
data sets are shown as dashed lines. Adapted from H. P. Huber, et. al., Rev. Sci. Instrum. 81 (2010) art. no. 
113701, with permission from AIP Publishing. 
 
There is an additional parasitic capacitance between the body of the cantilever and the sample surface, 
which is in parallel to Ctot. The parasitic capacitance can be effectively removed by making a differential 
measurement: 

  

∆𝑆11 = 𝑆11
𝐴𝑢 − 𝑆11

𝑂𝑥  ,       (8.22) 
 

where 𝑆11
𝐴𝑢is the reflection coefficient on the Au/Ti pad and 𝑆11

𝑂𝑥 is the reflection coefficient on an adjacent 
dielectric oxide surface. It is reasonable assume that the parasitic capacitance is constant across these 
two positions, as the change in height from the pad to the oxide is much smaller than the total distance 
from the sample surface to the cantilever body. 
 
Figure 8.3. Measurement of a silicon oxide staircase with a near-field scanning microwave microscope 
[46]. (a) Amplitude of the NSMM reflection coefficient imaged for a bare silicon oxide staircase. The inset 
shows a line cut along the dashed white line, converted to capacitance following the procedure described 
in the text. (c) Average capacitance on each step (black dots) compared to the trend predicted by Equation 
(8.7) (solid grey line). Adapted from H. P. Huber, et. al., Rev. Sci. Instrum. 81 (2010) art. no. 113701, with 
permission from AIP Publishing. 
 
Having accounted for the parasitic capacitance, the magnitude of the relative reflection coefficient 
|∆𝑆11|can be related to the total capacitance 
 

𝐶𝑡𝑜𝑡 = 𝛼|∆𝑆11| ,       (8.23) 
 
where 𝛼 is a calibration constant in fF/dB. The calculated capacitances for the metal capacitors are shown 
in Fig. 8.2(c). From the measurements in Fig. 2, the fitted calibration constant is found to be 𝛼=1.5 fF/dB 
and the background, interfacial capacitance 𝐶𝑏𝑎𝑐𝑘=2 fF. Once again, in order to measure the permittivity 
of an arbitrary sample, one additional parameter must be found: the effective tip radius. In the present 
approach, the effective tip radius is obtained from the measurement of the bare dielectric staircase, 
shown in Fig. 8.3 (Another common method for determination of the effective tip radius is discussed 
below and is based on atomic force microscope approach curves). We will return to the topic of 
capacitance calibration based on microcapacitor artifacts in Chapter 11. 
 
Though the use of a differential measurement (Equation (8.22)) nominally removes the effects of parasitic 
capacitances, an alternative is to estimate the parasitic capacitance by retracting the cantilever to a 
certain distance that is a few micrometers above the sample. The retraction is performed in series of small 
steps in height h and the reflection coefficient is measured at each step. At a certain distance from the 
surface, the dependence of the extracted capacitance becomes linear with distance. The slope of the 
extracted capacitance as a function of height then represents the contribution of the stray capacitance. 
This can be expressed as 
 



 𝐶𝑐𝑎𝑛𝑡 = 𝑘𝑐𝑎𝑛𝑡(ℎ − ℎ0)  ,      (8.24) 
 
where the constants kcant and h0 are determined by fitting the linear region of the measured, height-
dependent curve with Equation (8.24). The corrected capacitance over the dielectric steps, which 
accounts for the effects of Ccant in parallel with Ctot, is plotted in Fig. 8.3(b). The effective tip radius may 
then be determined from Equation (8.7), where contact corresponds to h=0. Additional corrections may 
be made for fringe capacitance contributions in the form of Equation (8.2) or Equation (8.3).  
 
Though this calibration procedure can be applied in many areas, it does not address measurements of loss 
or non-capacitive reactance. In addition, the procedure requires a number of micro-fabricated 
capacitance standards that may contribute additional uncertainty to the measurement. Introducing an 
alternative approach based on one-port calibration of network analyzers reduces the number of required 
standards and provide full quantitative determination of both resistive and reactive parts of the local 
impedance [47]. As above, this procedure assumes that the NSMM operates in contact mode. As in one-
port calibration of guided wave systems, the definition of the calibration reference plane is an important 
consideration (see Chapter 2). Here, it is possible to define the reference plane either at the probe tip or 
at another location in the signal path, as will be discussed later.  
 
From Chapter 2, recall that in a three-term error model, the measured, raw reflection coefficient S11m is 
related the corrected reflection coefficient S11 through 
 

𝑆11 =
𝑆11𝑚−𝑒00

𝑒01+𝑒11(𝑆11𝑚−𝑒00)
  ,      (8.25) 

 
where the error coefficients are defined as follows: e00 is directivity, the product e10e01 is tracking and e11 
is the port match. From the measurements of three electrically distinct standards with known reflection 
coefficients, it is possible to calculate the complex error coefficients. Once the values of the error 
coefficients are known, the real and imaginary parts of the impedance at the reference plane can be 
determined from the corrected reflection coefficient via Equation (8.19). The reference impedance Z0 can 

be chosen arbitrarily. In Reference [47], the reference impedance was chosen to be 10 k and three 
capacitors from the calibration artifacts described above were chosen as standards. This approach 
provides calibrated, local measurements of complex impedance by use of NSMMs, but it has a relatively 
large uncertainty, particularly for small capacitance measurements, and the procedure is not transferable 
from the calibration substrate to an arbitrary sample. The relatively large uncertainty arises from the 
difficulty in estimation of the change in fringing electromagnetic fields around the tip when moved from 
calibration standards to the sample under test. 
  
The problem of transfer from the calibration substrate to an arbitrary sample was solved by Gramse, et 
al. [30]. Their approach builds on the initial calibration ideas of Hoffman, et. al. in Reference [47] and 
Farina et al. in Reference [48]. In the latter reference, one central idea was the variation of the probe-
sample distance to create different calibration “standards.” The Gramse approach works in situ directly 
on the sample under test and does not require a special calibration sample [30]. The particular innovation 
in the approach is to simultaneously perform an NSMM measurement with a low-frequency electrostatic 
capacitance measurement as the tip approaches the sample. Though no longer necessary for calibration, 
well-characterized samples and substrates remain useful for validation of the procedure and for 
systematic study of effective tip radii on different classes of samples. The calibration procedure presented 
in Reference [30] works in typical NSMM operating frequency ranges (about 1 GHz to 26 GHz) and takes 
into account the full test platform response, including the VNA, cabling, and the specific geometry of the 



tip-sample interaction area. Because this approach may become a widely-used procedure for NSMM 
calibration, we describe the steps of this method in greater detail below. Our description will assume a 
measurement system similar to that shown in Fig. 8.1(a), but it is straightforward to adapt the procedure 
to other configurations.  

 
In the first step, the measured, complex reflection coefficient is converted into a complex impedance 
(admittance). Next, a one-port calibration is applied [47], following Equation (8.25). The reference plane 
is chosen to be right behind the cantilever chip shown in Fig. 8.1(a). This choice of reference plane means 
that the measured DUT includes the body of cantilever and the tip-sample system. As discussed in Chapter 
2, this choice is arbitrary, but has direct consequences for the implementation and interpretation of the 
de-embedding procedure. This choice of reference plane was necessitated by complications encountered 
in Reference [47] arising from the dependence of the stray capacitance of the cantilever chip upon the 
probe-sample distance. These complications may also reflect the fact that the probe tip does not fulfill 
the condition for single mode propagation at the reference plane. Strictly speaking, this precludes a 
definition of the reference plane at the probe tip. Note that this problem is significantly mitigated for 
conducting or highly planar samples.  
 
The mapping of the raw measured 𝑆11𝑚 onto corrected S11 is the same as in the previous case, with three 
complex error coefficients that have to be determined from the measurement of at least three reference 
samples with known impedances. However, this requires the positioning of these reference samples at 
the calibration reference plane. For the given choice of the reference plane, this represents a challenge. 
However, this problem is also addressed by utilizing a height-dependent measurement of the reflection 
coefficient in conjunction with an electrostatic force measurement. Specifically, the amplitude and phase 
of the reflection coefficient  𝑆11𝑚 is measured as a function of the tip-sample distance h at a fixed, selected 
frequency. For metallic and purely dielectric substrates, the character of the impedance change is purely 
capacitive, which allows the simultaneous, low-frequency measurement of the electrostatic force. As in 
electrostatic force microscopy (EFM), the force is proportional to 𝑑𝐶/𝑑ℎ: [23]-[25] 
 

𝐹𝑒𝑠(ℎ) =
1

4

𝑑𝐶

𝑑ℎ
𝑉0
2 cos(2𝜔𝑡) →

𝑑𝐶

𝑑ℎ
=

2𝐹𝑒𝑠,2𝜔

𝑉0
2  ,    (8.26)  

 
where V0 is the amplitude of low frequency modulation voltage and ω is the modulation frequency. 
Integrating the measured Fes(h) curves gives the desired tip-surface capacitance and the corresponding 
admittance 𝑌(ℎ) = 𝑗2𝜋𝑓𝐶(ℎ). This admittance acts as the reference sample in place of a calibration 
artifact and serves as the input into the mapping equation from the measured to the corrected reflection 
coefficient. Since this creates an overdetermined system (assuming that the measurements are made at 
more than three heights), an optimization algorithm is used to solve equation (8.25) for the error 
coefficients. It is important to recognize that dC/dh in Equation (8.26) may have to be adjusted by a small 
offset to account for the stray capacitance that is not detected by EFM. This EFM-based calibration 
procedure has been verified across multiple operating frequencies [30]. 
 
Having calibrated the S11 reflection coefficients, the S11 images can be converted into the real and 
imaginary parts of impedance or admittance. Once again, to extract parameters of interest from 
calibrated reflection coefficient measurements of an arbitrary sample, it is necessary to know the effective 
tip geometry. Fortunately, the approach curve measurements enable the extraction of the tip geometry 
such as radius R, cone angle𝜃, and cone height L by comparison of the calibrated measurements to finite 
element simulations. In some cases, the cone height and cone angle may be fixed to manufacturers’ 
nominal values, thus reducing the set of fitting parameters in the determination of tip geometry and 



parasitic capacitance. These parameters are in general considered to be effective dimensions, absorbing 
the influence of any imperfect approximations or unknown electromagnetic field interactions.  
 
Finally, a thorough characterization of an NSMM system has been described in Reference [49], including 
the introduction of a calibration approach for spatially-resolved, subsurface measurements as a function 
of material and sample depth. Although the spatial resolution was in the micrometer range the results are 
in principle scalable to nanometer dimensions. The approach was designed for a critically coupled 
resonator system. As with many NSMMs, the probe’s interaction with the sample leads to changes in the 
resonance frequency and the quality factor, which manifest as changes in the complex reflection 
coefficient. A schematic circuit model of the critically coupled resonator and the sample impedance is 
shown in Fig. 8.4. The schematic also shows the reference plane at the input to the resonator (P1) and at 
the base of the cantilever (P2).  At the P1 reference plane, a standard coaxial or waveguide calibration is 
performed. To translate to the next reference plane P2, it is necessary to de-embed the resonator 
between P1 and P2. This can be accomplished through a frequency-swept measurement of the reflection 
coefficient when the tip is far from the surface of the sample. From this frequency sweep, the circuit 
parameters of the resonator in the vicinity of the operating frequency can be established. Having 
established these circuit parameters, the resonator can be de-embedded and the reference plane can be 
moved to P2 to get the calibrated probe-sample coupling impedance.  
 
Figure 8.4. Critically coupled resonator and sample impedance. Reference plane P1 is at the input to 

the resonator and reference plane P2 is at the tip of the probe. The sample resistance RS and sample 

capacitance CS contribute to the overall sample impedance ZS. © [year] IEEE. Adapted, with permission 

from Jonathan D. Chisum, and Zoya Popović, IEEE Trans. Microw. Theory Techn. 60 (2012) pp.2605-2015. 

 
8.3.2. Calibration of an interferometric scanning microwave microscope  
 
Naturally, variations in RF and microwave scanning probe microscope design necessitate modifications of 
the calibration procedures. The remaining sections discuss how to approach calibration for specific cases 
that vary from the NSMM system we have treated above.  
 
In Reference [50], the authors introduced an interferometric scanning microwave microscope as a means 
to improve the sensitivity of microwave microscopes. As we discussed in Chapter 3, interferometric 
approaches are an effective strategy for measurement of high-impedance devices that display a large 

mismatch with 50  test equipment. The measurement resolution of a VNA can be estimated from the 
relative variation 
 

∆𝑍𝐷𝑈𝑇

𝑍𝐷𝑈𝑇
= [

(𝑍𝐷𝑈𝑇+𝑍𝑟𝑒𝑓)
2

2𝑍𝐷𝑈𝑇𝑍𝑟𝑒𝑓
] ∆𝑆11𝐷𝑈𝑇  ,     (8.27) 

  
where 𝑍𝐷𝑈𝑇 is the device under test (DUT) impedance, ∆𝑍𝐷𝑈𝑇 represents the change in DUT impedance 
due to the change of the device properties during the scan, and 𝑍𝑟𝑒𝑓  is the reference impedance, usually 

50 Ω. Clearly, the uncertainty in the measurements degrades as 𝑍𝐷𝑈𝑇 increases. An early approach to 
reduction of this uncertainty was to introduce a comparator circuit and amplifier between the tip and the 
VNA port. This improved the signal-to-noise ratio for large impedances, albeit with some limitations. 
Further improvement was realized by including an adjustable interferometer between the VNA and the 
tip. This has several advantages, including compatibility with an increased range of impedances and a 
broader range of operating frequencies. 



 
Figure 8.5 Interferometric scanning microwave microscope. Schematic of the circuit and test platform 

for implementing an interferometric scanning microwave microscope NSMM. The interferometric 

measurement is made by use of a vector network analyzer (VNA). Reprinted from T. Dargent, K. Haddadi, 

T. Lasri, N. Clement, D. Ducatteeau, B. Legrand, H. Tanbakuchi, and D. Theron, Rev. Sci. Instrum. 84 (2013) 

art. no. 123705, with permission from AIP Publishing. 

The interferometer connection to the VNA is shown in Fig. 8.5. This is once again a single port 
measurement. The signal from the source is split and directed through an interferometer that resembles 
a Mach-Zehnder configuration. The interferometer comprises a coaxial power divider and two hybrid 
couplers, one of which is connected to an attenuator. The signal from the source at port 1 of the VNA (a1 
in Fig. 8.5) is split in the power divider and one arm is fed to the tip of the microscope (ainc). The reflected 
signal from the tip-sample system (aref) is combined with the second part of the signal passing through the 
attenuator in the second coupler. The resulting interferometric signal is then amplified and analyzed in 
the receiver in port 1 of the VNA. The attenuator is adjusted to cancel the signal a3 in front of the amplifier 
through destructive interference between the two branches of the interferometer. The variable 
attenuator ensures that complete cancellation through interference can be obtained for any impedance 
values.  
 
This case represents an easily implemented improvement to the signal-to-noise ratio of NSMMs. 
However, use of the interferometer configuration requires a modified calibration procedure; a traditional, 
single port calibration procedure is not sufficient. Although the whole assembly of the interferometer and 
the tip-sample junction is connected to a single port of the VNA, the calibration has to be done between 
the port 1 source of the VNA through the assembly to the receiver of the port 1. To circumvent this, a 
calibration procedure based on a modified one-port error model was developed for interferometric 
NSMM. A set of oxide microcapacitors similar to those described earlier may serve as reference standards 
for the interferometer calibration. 
 
The calibration is carried out as follows. The reference load with reflection coefficient S11ref is obtained by 
positioning the tip onto a thick dielectric that serves to establish the reference impedance. The attenuator 
is set to minimize the interference signal such that at a given frequency the transmission signal (a3) is close 
to zero, thus ensuring high measurement sensitivity for impedances around the reference impedance.  As 
shown in Fig. 8.5, a4 represents the incoming signal from the DUT into the VNA. One can consider this as 
a signal entering a second port, an effective “port 2,” loaded with the reflection coefficient of sample 
under test. Thus, it is possible to represent the effect of the interferometer as a matrix complex scattering 
parameters resembling a two-port error box. It is possible to relate the measured reflection coefficient in 
terms of the scattering parameters of the interferometer through Equation (8.25), provided that the 𝑒𝑖𝑗  

coefficients now represent the 𝑆𝑖𝑗 parameters of the interferometer with indices equal to 0 replaced by 1 

and indices equal to 1 replaced by 2. S11 represents the calibration impedance reflection coefficient. These 
parameters as “interferometer transition coefficients.” The interferometer transition coefficients are 
determined from measurements of three known standards chosen from a calibration kit. Increasing the 
number of calibration standards leads to an overdetermined system and in turn, a more robust calibration 
with reduced statistical uncertainty. If the calibration standards are all pure capacitors, it is possible to 
reduce the complexity of numerical optimization by assuming that only the phase shift of the reflection 
coefficient has to be taken into account. 
 
   



8.3.3. Time domain approaches in scanning microwave microscopy 
 
An alternative approach to NSMM data processing is to move post processing steps from the frequency 
domain to the time domain [51]. The underlying idea that motivates moving to the time domain is that in 
broadband near field microscopy both near- and far-field interactions exist simultaneously. The objective 
is to disentangle these contributions based on their separation in time. Broadly speaking, the near-field 
interactions at the tip are instantaneous and the far-field echo is delayed by a certain amount of time that 
depends on distance from the source to the reference plane. This time separation allows partial 
disentangling of the signals and also can be used as a filter to reduce the influence of either set of 
interactions from the images. Notably, using this approach for de-noising raw measured images does not 
require ultra-wideband measurements, though such measurements may be required in the case that 
quantitative information about a selected physical or circuit parameter of the system is required. 
 
Practical implementation of this procedure begins with measurement of the reflection coefficient over a 
limited frequency range. The frequency dependence of the reflection coefficient must be measured at 
each point of the scanned image area. The measured frequency domain responses are linearly combined 
to a time-domain signal via [51] 
 

𝑠(𝑡) = ∑ ℜ[𝐾(𝑓𝑖)𝑆(𝑓𝑖)𝑒
𝑗2𝜋𝑓𝑖]𝑓𝑖  ,     (8.28)  

 
 
where 𝑓𝑖 are the measurement frequencies, S(f) is the reflection coefficient as measured in the given 
frequency band, and K(f) is a weighting function.  For equidistant frequency points within the selected 
bandwidth, Equation (8.28) becomes a standard finite inverse Fourier transform. An example of an NSMM 
data set transformed to the time domain is shown in Fig. 8.6. The time domain response shown in Fig. 8.6 
allows windowing of the local and non-local interactions. With proper selection of the windows, it is 
possible to de-noise the image by cutting out the local or non-local interactions and transforming back to 
the frequency domain. In Reference [51], the authors used as K(f) in Equation (8.28) a Kaiser-Bessel 
windowing function, but other windowing functions are possible. 
 
Figure 8.6. Time-domain measurements with a near-field scanning microwave microscope. The 
differences in the reflection coefficient measured by use of NSMM as the tip-sample coupling capacitance 
is changed from 0.700 fF to 0.701 fF then to 0.702 fF. The data has been transformed of from the 
frequency-domain to the time-domain. Time-frames during which local and non-local interactions 
dominate are indicated (dashed line windows). Reprinted from [51], with permission from the Royal 
Society of Chemistry. 
 
An example application of this approach to images of living myotubes is shown in Fig. 8.7.  Fig. 8.7(a) is a 
microwave image taken by use an STM-based NSMM and Fig. 8.7(b) is the same data after post processing 
in the time-domain. The de-noising in the image is clearly observable, revealing details of the image not 
visible in the STM image, enabling the identification of additional features as extracellular fluids and saline 
crystals in the post processed image. This approach is compatible with and complementary to the NSMM 
calibration procedures described in the preceding sections. The calibration of the microscope 
complemented by time-domain post processing provides a solid foundation for quantitative 
measurement of material and device properties. Note that this post-processing approach has to be 
distinguished from direct time-domain measurements of the materials and devices. Such direct 
measurements require either direct impulse measurement techniques or time-domain, tip-enhanced 
scattering techniques. 



 
Figure 8.7. De-noising of microwave images by use of time-domain processing. (a) As-measured 
reflection coefficient amplitude image of living myotubes acquired with an STM-based NSMM. (b) The 
same image, following time-domain post-processing of the data. Reprinted from [51], with permission 
from the Royal Society of Chemistry. 
 
8.3.4 Calibration of evanescent microwave magnetic probes 
 
For some applications it is useful to trade spatial resolution for sensitivity to a specific field parameter. To 
that end, another alternative is to use a magnetic dipole as the sensing element in the probe tip instead 
of an electric dipole. In fact, some of the earliest experimental subwavelength microwave techniques were 
applied to magnetic materials. They were introduced in late 1950s and were based on a subwavelength 
aperture in a waveguide. The objective was to map inhomogeneity in thin magnetic films [52],[53].   
 
A novel variant of magnetic-dipole-based, near-field microscope was introduced in Reference [54] for 

characterization of metal samples properties with conductivity resolution of 5x10-3 . The probe is based 

on a /4 resonator built as part of a coplanar waveguide (CPW) transmission line ending with a small loop.  
When in close proximity to a sample, the loop couples to the sample through the coupling capacitance 
and loading impedance of the sample. These interactions are manifest as changes in the admittance of 
the probe circuit. Because the coupling to the resonator is through the reactive channel, the admittance 
(or impedance) calibration procedure for a magnetic-dipole probe is similar to the impedance calibration 
of electric-dipole probes. 
 
However, the challenge of calibrating the DC magnetic field of the electromagnet remains. For both 
magnetic-dipole- and electric-dipole-based NSMMs, the standard approach for characterization of the 
dynamic response of the magnetic materials is through the measurement of the eigen-modes of the 
magnetic system, represented in the linear regime and microwave frequency range through 
ferromagnetic resonance (FMR). FMR measurements are at times performed with a static magnetic field 
applied to the sample while the frequency is swept. More often, due to the difficulty of de-embedding of 
frequency-dependent elements in the test platform, the measurements are made at a constant frequency 
while the biasing magnetic field is swept. The latter approach is easier to calibrate, because the sample 
response reflects physical changes in the material as a function of the magnetic field. Therefore, with the 
frequency fixed, the intensity of the resonance response is measured relative to the non-resonant 
response. Given that determination of the DC magnetic resonance field(s) is usually the primary objective, 
the calibration procedure is reduced to calibration of the local magnetic field. In some cases, this can be 
done using nuclear magnetic resonance, but in most cases and particularly for on-chip measurements a 
different approach has to be used. 
 
A more accessible field-calibration method is to use a reference sample with a well-known dynamic 
magnetization response. The natural choice of a reference material for this purpose is single crystal 
yttrium iron garnet (YIG), due to its well-known properties, low intrinsic linewidth and well-established 
FMR response. The well-known, resonant response of single-crystal YIG can be used to calibrate the DC 
magnetic field of electromagnets incorporated into NSMM systems. The configuration of the microscope 
electromagnet is shown in Fig. 8.8(a). The sample is positioned on the top of the magnet and therefore it 
is difficult to calibrate the correct field value at the position of the sample from calculations or simulations. 
To mitigate this problem, a thin epitaxial YIG film is used as a reference sample. The field-swept FMR 
response is locally measured to calibrate the field value, as shown in Fig. 8.8(b). In addition to providing a 
convenient approach to field calibration, this measurement also demonstrates that magnetization 



dynamics can be measured with an electric dipole NSMM. The position of the resonances in the field-
swept FMR measurement at constant applied RF frequency determines the DC resonant fields. As the 
field-dependent resonance frequencies for YIG are well known, the position of the dip in the curve 
calibrates the field value for a given probe position. Also note that each resonance dip corresponds to an 
excited spin wave mode in the magnetic sample. Therefore, the measured dip(s) represent dynamic 
excitations of the measured sample. Thus, by selecting the corresponding DC field of an excited mode and 
scanning over the sample, one can visualize the spin wave pattern for a selected mode [55].  
 
Figure 8.8 Near-field scanning microwave measurements of an Yttrium Iron Garnet (YIG) film. (a) 
Photograph of an electromagnet and RF signal path integrated into the sample holder for use with a 
commercial broadband scanning microwave microscope. (b) Amplitude of the local, reflected signal from 
a YIG thin film measured with an NSMM operating at a constant frequency. 
 
8.3.5. Evanescent microwave microscopes in transmission mode 
 
Recently, some efforts in scanning microwave microscopy have moved to the implementation of 
microscopes in transmission mode rather than reflection mode. This trend is particularly important for 
nondestructive subsurface tomography of defects and interfaces. An early report of such an effort 
appeared in Reference [56], in which the feasibility of using an NSMM in transmission mode was 
investigated by use of three-dimensional, finite-element modeling. A sensitivity analysis was carried out 
by varying different parameters of the system including the measurement frequency and observing the 
resultant change in the complex transmission coefficient. The models are supported by preliminary 
measurements on a Si substrate with spatially-varying dopant concentrations. The investigation 
concluded that measurement of transmission provides improved sensitivity with respect to existing 
reflection-mode NSMMs, especially for the phase.  This improved sensitivity has important experimental 
implications, but at present it comes at the price of quantitative metrology. 
 
A well-established calibration procedure for a transmission mode NSMM does not presently exist. A 
further complication is that the traditional, two-port VNA calibration procedures are not directly 
transferable to this case. One significant challenge is the establishment of the reference planes. On one 
side of the sample, the reference plane can be chosen in a similar way to the case of a single port 
calibration at the probe tip. On the other side, the plane can be chosen to be at a designated port, probe, 
or second electric dipole (antenna). However, the device now includes not only the tip-sample assembly 
of the first port, but also the transmission coupling for the second port as well as the complex interaction 
of the microwaves throughout the thickness of sample. Thus, the total DUT is a complicated, multifaceted 
system and it is extremely challenging to de-embed the material properties from the total DUT 
measurement. Furthermore, neither the probe tip nor the second antenna fulfills the conditions for single 
mode propagation at the reference plane. 
 
Moving forward, the establishment of the necessary error model and error coefficients for a transmission-
mode NSMM is formidable. Possible ways forward include the multimode calibration procedure discussed 
in Chapter 2 or procedures for calibration of antenna-to-antenna transmission in the near field [57]. This 
is not a simple problem and the work in this area is ongoing. 
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